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On an integrable stochastic Volterra lattice

S De Lillo† and V V Konotop‡§
† Dipartimento di Fisica, Universita di Perugia, Perugia 2-00185, Italy
‡ Department of Physics, University of Madeira, Prac¸a do Munićıpio, P-9000 Funchal, Portugal
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Abstract. We introduce an integrable inhomogeneous generalization of the Volterra lattice,
allowing one to treat linear and nonlinear multiplicative noises and to discuss statistical properties
of the exact solutions.

1. Introduction

Although during the last few years a great deal of attention has been paid to nonlinear
systems perturbed by random forces (see e.g. [1–3] and references therein) the behaviour of
the most recent is still not well understood. Probably the most important problem which still
remains to be resolved is the choice of an adequate set of parameters describing a nonlinear
random system. For instance, it is well known that various momenta of a nonlinear field
display dynamics which, in generic situations, drastically differs from the dynamics of the
field itself. The first examples of this phenomenon were reported in [4, 5] (see also [1]).
There it has been shown that integrable addends to the nonlinear Schrödinger equation [4]
and to the Korteweg–de Vries (KdV) equation [5] result in random motion of a soliton
without a change in its shape, while respective mean fields are Gaussian wavepackets
spreading with time. In principle, by using the transition to a moving frame it is possible to
indicate a general class of nonlinear evolution stochastic equations which manifests Gaussian
spreading of the mean field but distorsionless propagation of the field itself [1]. If a system
is integrable by means of the inverse-scattering technique its generalization allowing the
inclusion of inhomogeneous terms can be found by requiring a spectral parameter to depend
on time. This also allows observation of the phenomena mentioned above, in the case of
an integrable inhomogeneous discrete version of the nonlinear Schrödinger equation [6, 7],
the homogeneous version of which is known as the Ablowitz–Ladik model [8]. As has
been shown in [7] a very useful technical tool in the analysis of inhomogeneous integrable
lattices is a gauge transformation. We also use this approach below.

As regards discrete systems we must emphasize one more aspect of the problem.
Namely, even in a regular case discretization is not an umbiguious procedure. In the
stochastic case even less is known about the relation between the continuum evolution
equation and its discrete version. In particular, to the best of the authors’ knowledge the
discrete integrable version of the stochastic KdV equation introduced by Wadati [5] has not
been investigated and reported so far.
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Portugal.
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The purpose of this paper is to introduce and study an integrable stochastic Volterra
(ISV) lattice, which in the continuum limit reduces to the stochastic KdV equation [5]. We
choose the integrable model because its great advantage is that the field can be explicitly
expressed through the random field. This allows us to compare field configuration with its
averaged values and adequacy analyse various stochastic characteristics.

The paper is organized as follows. The integrable inhomogeneous lattice is introduced
in section 2. There we also discuss the continuum limit of the model and represent its
soliton solution. Section 3 is devoted to statistical characteristics of a one-soliton solution.
The outcomes are summarized in the conclusion.

2. The integrable inhomogeneous Volterra model and its continuum limit

Let us start with aUV -pair as follows

Un =
(
λ(t) vn(t)

−1 0

)
(1)

V n =
(
vn(t)+ γ (t)n vn(t)

(
λ(t)− pn+1(t)

λ(t)

)
−λ(t)+ pn(t)

λ(t)
vn−1(t)− λ2(t)+ γ (t)(n− 1)+ pn(t)

)
. (2)

Hereλ(t) is a spectral parameter which is allowed to be dependent on time andγ (t) is an
arbitrary (in particular, random) function of time. Then the zero-curvative condition (see
e.g. [10])

U̇n + UnVn − Vn+1Un = 0 (3)

results in a system of equations

λ̇− γ λ− q
λ
= 0 (4)

v̇n + vn(vn−1− vn+1)− 2γ vn + (pn − pn+1)vn = 0 (5)

pnvn − pn+2vn+1 = −q (6)

whereq ≡ q(t) can be an arbitrary function of time (but not of the site numbern). As is
evident, atγ ≡ 0 andq ≡ 0 the spectral parameterλ is a constant and (5) is reduced to the
well known Volterra equation [9].

In order to understand the physical meaning of the introduced functionsγ (t), p(t) and
q(t) let us consider the continuum limit of (5), (6) using the scaling as follows:x = εn,
γ (t) = ε5γ̃ (t), q(t) = ε5q̃(t),

vn = 1− ε2ṽ(x) pn = p(t)[1+ ε2ρ1(x)+ ε3ρ2(x)+ ε4ρ3(x)+ · · ·] (7)

where ε is a small parameter (the functionsv(x) and ρ(x) also depend on time). By
straightforward algebra we obtain from (6) the relations

∂ρ1

∂x
= 1

2

∂ṽ

∂x
(8)

∂ρ2

∂x
= −1

4

∂2ṽ

∂x2
(9)

∂ρ3

∂x
= 3

8

∂ṽ2

∂x
+ q̃(t)

p(t)
. (10)

Then (17) yields

∂ṽ

∂t
− ε

(
2− p(t)

2

)(
∂ṽ

∂x
− ε2ṽ

∂ṽ

∂x
− 1

6
ε3 ∂

3ṽ

∂x3

)
+ 2ε3γ̃ + ε3 q̃(t)

2p(t)
= 0. (11)
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By introducing new variables

X = x + 2ετ T = ε3

3
τ (12)

τ = t − 1
4

∫ t

0
p(t ′) dt ′ (13)

equation (11) is reduced to

∂ṽ

∂T
− ∂3ṽ

∂X3
+ 6ṽ

∂ṽ

∂X
+ γ ′(T )+ q ′(T ) = 0 (14)

hereγ ′(T ) = 6γ̃ (t)/τ andq ′(T ) = 3
2τ

q̃(t)

p(t)
. Thus the last term in (5) and the inhomogeneity

in (6) in the continuum limit give additive perturbations. Consideringγ ′(T ) andq ′(T ) as
random functions one arrives at the KdV equation with additive noise studied by Wadati [5].
In this context it is interesting to note thatγ (t) andp(t) in (5) and (6) can be interpreted
as the linear and nonlinear multiplicative noise, respectively.

In this paper we concentrate on a particular case of the system (4)–(6), whereq ≡ 0,
subject to the boundary conditions as follows,

lim
|n|→∞

vn = v(t) = e20(t) lim
|n|→∞

pn = p(t) (15)

where

0 ≡ 0(t) =
∫ t

0
γ (t ′) dt ′ (16)

andp(t) is an arbitrary function of time. Note that the spectral parameter in the case at hand
is given byλ = λ0e0 (λ0 being the initial value of the spectral parameter). The relation (6)
can be resolved with respect topn

pn = p(t)
∞∏
k=1

vn−2k

vn+1−2k
. (17)

Thus the term withpn describes nonlocal interactions in the lattice.
In order to find soliton solutions of (5) and (17) we first note that (5) is gauge equivalent

to the equation

u̇n + vun(un−1− un+1)+ un(pn − pn+1) = 0 (18)

where un is linked with vn: un = vn/v(t), and hence is subject to the boundary
conditions lim|n|→∞ un = 1. The gauge equivalence is provided by the matrixG(n) =
vn/2diag(1, v−1/2). The respectiveŨn matrix, Ũn(λ̃) = G−1(n + 1)Un(λ)G(n), where
λ̃ = λ/

√
v (= constant atq = 0), coincides with theU -matrix for the homogeneous

Volterra lattice (for the last one see e.g. [10]). This allows us to use the well known
results on the Volterra lattice and after standard computing the temporal dependence of the
scattering data to write down the one-soliton solution of equation (5) in the form

vn = v(t)cosh2n+1 cosh2n−2

cosh2n cosh2n−1
(19)

where

2n = −K[n− n0+X(t)] (20)

X(t) = tanh(K)

2K
P(t)− sinh(2K)

K
V (t) (21)



3834 S De Lillo and V V Konotop

P(t) =
∫ t

0
p(t ′) dt ′ (22)

V (t) =
∫ t

0
v(t ′) dt ′ (23)

K is a positive constant defining soliton width and amplitude, andn0 is a constant which
plays a part of the initial position of the soliton (in what follows it will be taken equal to
zero). As is evidentX(t) plays a role of the coordinate of the soliton centre.

3. Statistical characteristics of the one-soliton solution

Before going into details of the statistics of the one-soliton dynamics we make some general
comments about the solution (19).

The soliton (19) can be viewed as an excitation against a backgroundv(t) which is
time dependent. It then follows from (19)–(23) that the linear multiplicative inhomogeneity
affects both the soliton velocity and the background. In particular, ifγ is a negative constant
(i.e. it describes dissipation), and respectivelyv = exp(−2|γ |t), the soliton velocity also
decreases in accordance with the exponential law (note that this result is exact and hence
is valid at anyt).

The nonlinear multiplicative inhomogeneity affects only the velocity of the soliton. In
particular, at constantp the velocity shift is given bytanhK

2K p.
Periodic p(t) results in oscillation of the soliton while periodicγ (t) leads to both

oscillations and a change of the mean value of the velocity.
In this paper we are mainly interested in a situation whenγ (t) andp(t) are random

functions. More precisely we consider them to Gaussian coloured noises with the
characteristics as follows,

〈γ (t)〉 = 〈p(t)〉 = 0 (24)

〈γ (t)γ (t ′)〉 = Dγ

2τγ
exp

(
−|t − t

′|
τγ

)
(25)

〈p(t)p(t ′)〉 = Dp

2τp
exp

(
−|t − t

′|
τp

)
. (26)

Here positive constantsDγ,p characterize intensities of fluctuations andτγ,p are respective
autocorrelation radii (atτγ,p → 0 the introduced distributions reduce to white noises). The
random processesγ (t) andp(t) are considered to be mutually uncorrelated:〈γ (t)p(t)〉 = 0.

It follows from the general form of the solution (19) that the soliton evolution can be
split into three different processes: homogeneous background oscillations, diffusion caused
by the nonlinear multiplicative noisep(t) and diffusion due to the linear multiplicative
noisev(t). The first of the processes is originated by the linear multiplicative noise and is
associated with exponential growth of the mean value of the background:

〈v(t)〉 = exp{2Dγ [t + τγ (e−t/τγ − 1)]}. (27)

These amplitude fluctuations are modulated by the functionun which describes soliton
fluctuations. Meanwhile the average soliton solution and its higher momenta grow, together
with the momenta of the background and hence are not adequate statistical characteristics.
This is why, in what follows, we concentrate on the stochastic dynamics of a soliton centre
which seems to be the most interesting physical value.

As mentioned above the diffusion of the soliton is described by two uncorrelated
components. One of them, due to the processp(t) in the limit τp → 0 is nothing but
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the Brownian motion. The random motion originated by the linear multiplicative noise
v(t) is characterized by the mean velocity dX(t)/dt = −(sinh(2K)/K)〈v(t)〉. Thus as a
result of fluctuations the acceleration of the soliton occurs [see (27)] which reflects the fact
that the mean amplitude of the background grows. The growth of the mean value of the
background can be considered as a peculiarity of the discrete problem since the mean value
of the background in the respective continuum model (14) is zero. Moreover the two-point
correlator of the background in the discrete case displays exponential growth while in the
continuum approximation the growth of the background dispersion if governed by the power
law. This is a reflection of a general fact that the discreteness introduces a new spatial scale
in the problem and as a consequence changes the statistics of the response of the system on
the effect of stochastic forces.

The mean-square displacement is given by

〈X2〉 = sinh2(2K)

12D2
γK

2
e8Dγ t−6Dγ τγ + tanh2K

4K2
Dpt . (28)

Hereafter, for the sake of simplicity, we keep only the leading term in the expansion with
respect to small parameters exp(−t/τγ,p).

Fluctuations of the background and the soliton diffusion being originated by the same
stochastic process are correlated. Fort large enough one obtains

〈v(t)X(t)〉 ≈ sinh(2K)

6KDγ

exp[2Dγ (4t + 3τγ (e
−t/τγ − 1))]. (29)

We finally consider the correlation between the nonlinear inhomogeneityp(t) and the
soliton centre coordinateX(t). From (21) we obtain the correlator at different times

〈p(t1)X(t2)〉 = − tanh(K)

2K
〈p(t1)P (t2)〉. (30)

We first consider the caset1 > t2. From (22) and (26) we obtain

〈p(t1)P (t2)〉 = Dp

2

[
exp

(
t2− t1
τp

)
− exp

(
− t1
τp

)]
. (31)

We observe that the above correlator is exponentially vanishing ast1 grows (t2 being fixed),
moreover it is also vanishing in the white-noise limitτp → 0 (t1 and t2 being fixed). This
result tells us that for a truly uncorrelated process (white noise) the process at a given time
cannot affect the soliton position at a previous time.

In the caset1 < t2 we obtain instead

〈p(t1)P (t2)〉 = Dp

2

[
2− exp

(
t1− t2
τp

)
− exp

(
− t1
τp

)]
(32)

which shows that the correlator is different from zero both in the case whent2 grows (t1
being fixed) and in the white-noise case,τp → 0. At t1 = t2 = t (31) and (32) give the
equal time correlator

〈p(t)X(t)〉 = − tanhK

4K
Dp(1− e−t/τp ). (33)

4. Conclusion

To conclude we have introduced an integrable stochastic Volterra lattice which in the
continuum limit is reduced to the integrable stochastic KdV equation. Although in the
continuum limit the two different processesγ (t) andq(t) give additive noises of formally
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the same kind, the respective terms in the discrete system are essentially different. Moreover,
linear and nonlinear multiplicative noises in the lattice are reduced to additive noises in the
respective continuum model. Only one of them,γ (t), has been considered in detail in this
paper. The spectral parameter of the associated linear problem is a non-Gaussian random
process. The one-soliton solution of the problem is a localized excitation displaying random
motion against a fluctuating background.

Although in this paper we have analysed the stochastic dynamics of the single soliton,
some remarks about multisoliton solution are in order. As is well known, in the absence of
the stochastic forces the structure of multisoliton solutions, at least in the assymptotic region,
is rather completely described by the discrete spectrum of the associated linear problem and
the trace of the soliton–soliton interactions exists only in phases. When stochastic forces are
included in the consideration the situation is changed since solitons involved in the dynamics
undergo a random number of mutual collisions. As a consequence of this the displacement of
a single soliton is determined not only but is own random walk (i.e. its motion in the absence
of other solitons but also by random phase shifts due to random collisions. Moreover, now
the limit t → ∞ does not correspond necessarily to spatial separation of solitons. Thus,
although the formal expression of the multisoliton solution of the problem (4)–(6) can be
directly obtained from the multisoliton solution of the conventional homogeneous Volterra
lattice, the analysis of the ‘fine structure’ of the multisoliton solution is reduced to a study of
a rather combersome stochastic problem (we leave that problem for further investigations).
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Appendix. LA-pair

An alternative way of solving integrable equations is to represent them in the form of a Lax
pair. In the case at hand, however, the zero-curvative-condition representation seems to be
drastically simpler. In order to illustrate this here we represent theLA-pair for the equation
(18)

Lnm = √unδn,m+1+√umδn+1,m (34)

Anm = 1
2v(t)
√
unun−1δn,m+2− 1

2v(t)
√
umum−1δn+2,m − 1

2an,m (35)

where

anm = 0

at n = m, or n−m = 2k + 1 (k being an integer),

anm = (−1)kχm+1

k∏
q=0

√
un+2q+2

un+2q+1

at n−m = −2k (k being a positive integer),

anm = (−1)k−1χm+1

k−1∏
q=1

√
un−2q+1

un−2q+2
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at n−m = 2k (k being a positive integer), and

χm = − p(t)

umum+1

∞∏
k=0

um−2k

um−1−2k
.

Thus, while theL-matrix has the standard form [11], theA-matrix is much more complicated
than in the absence of the nonlinear multiplicative inhomogeneity(anm ≡ 0).

It is interesting to note that by comparing theLA representation with (1)–(3) one can
compute the inverse matrix(L−1)nm.
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